

Seminar

CHAM

CFD analysis performs a vital role within data centre design, management and operational processes.

CFD helps maximise the performance of cooling and ventilation systems, model the impact of additional loading and equipment distribution, and investigate emergency shut-down scenarios.

Seminar

CHAM

A streamlined method has been developed at CHAM that constructs a list of data centre contents together with their key parameters (e.g. layout of all cabinets, dimensions, air flow rates, heat output, orientation and other parameters for each one) within a single spreadsheet.

AV

Т

Data Centre Simulation

The spreadsheet is read by PHOENICS, enabling common data centre objects (i.e. CRACs, cabinets, floor / ceiling grilles) to be constructed automatically.

This method allows rapid changes to be affected, such as scaling IT loads by changing a single value in the spreadsheet.

Soler Arrig		10.0000									
Yoff (m) No of calibrets		0 43									
1	4.75	0.197	2.1330	2.77	4-24/72	0	1 747190002	20720	0	2 1.3.300	£.
2	9 75	0.07	2 1336	4.86	4.27	0	1.74719822	20720	0	2 1336	10
29.	0.03	0.97	2 1336	7.64	4.194	80	0.10010076	1205	10	25 13 36	
	0.011	0.97	2 1336	2.04	0.10	0	0.10019970	1295	0	2,1136	e .
5	45.7.8	0.07	2.1336	7.04	7.02	0	1.2011974	14245	0	0.1336	10
0	0.75	0.92	2.1336	49.12	4.22	0	1 74719622	20720	0	2.1300	E .
- X.	W. 7.4	0.07	2.1330	11:30	4.101	0	1.0079404540	194320	0	2.1330	15
.44	14.715	0.97	27.100340	1111-100	4.27	0.	1 74711022	290720	0	12. 112:00	10
9.	0.03	0.97	2,3030	15.67	5.49	0	0.10919976	1295	10	Z.1338	e
30	3.05	0.97	2.4336	15.57	7.32	0	0.54509882	6475	0	2.1336	<i>E</i> .
9.6	1.22	0.97	2:1336	15.57	10.97	0	0.21839953	2590	0	2,1336	12
12	1.22	0.07	2.1330	¥55-35¥	12.00	0	0.21030053	2590	0	2,4336	16. I
7.0	8.75	0.97	2.1230	17.05	4.27	0	1.74710022	20720	0	27,13300	F
3.4	0.75	0.97	2,1336	19.84	4.27	0	1 74710622	20720	0	2,1330	8
\$8	8.75	0.07	2,1336	26.10	4.27	0	1 74710622	20720	0	2,1336	8
345	0.75	6.97	2,1336	28.37	4.27	00	1.74719622	20720	0	2.1338	e -
37	D 75	0.97	2 1336	30.45	4.27	0	1.74710622	20720	0	2.1336	- E
10	9.25	0.97	2:1336	32.64	4.27	0	1.74710822	20720	0	2.1336	10
219	15.85	0.92	2.1336	36.95	2.44	0	2.03919300	33670	0	2,1330	16
20	3.05	0.97	2.1336	35:00	37.68	0	0.54599882	0475	0	2,1336	16
22	18.896	0.07	2.1030	102.00	37,68	0	0.545096882	6475	0	27.83330	6
22	3.05	0.97	2 1030	10.00	37.00	0	0.54509882	6475	0	2.1336	0
23	10:36	0.97	2.4336	D 47	32.92	0	1.85639509	22015	0	2:13:56	- E
24	11.50	0.92	2,1336	11.56	32.92	0	2.07479551	24005	0	2,1336	E
55	11.58	0.07	2.1300	14.00	307.907	0	2.07479551	24005	0	2,1036	£
20	8.2.8	0.07	2.1/096	10.10	104.24	0	1.037900030	194.95	0	al 3000	45
27	2.44	0.07	2,73396	24.97	40.23	0	0.4388709008	5180	0	27.13330	8
28	4.288	0.97	2,1336	26.85	37.60	0	0.87359611	10360	0	2.1336	E
20	4.850	6.07	2.1336	26.63	37.00	00	0.07359611	10300	0	2,1330	e .
30	0.03	0.97	2 1336	30.00	36.74	0	0.10919970	1295	0	2,1300	- E
31	0.011	0.97	2:1006	30.20	39.99	0	0.10919976	1296	0	2.1336	6
3.2	0.01	0.92	2.1336	30.20	41.15	0	0.10919970	1295	0	2.1336	6
33	0.61	0.07	2,1306	30.20	42.57	0	0.10919926	1295	0	2,1336	- E
34	18 252	0.07	2.1356	32.64	329.401	0	0.21830953	2000	0	2 13 36	- E
30	D.413	0.97	2,1030	32.64	42.00	0	0.10019970	1295	0	2.1336	0
36	15.65	0.97	2,4336	36.94	20.65	0	2.03010306	05670	0	2:1336	£.
37	2.44	0.97	2.1336	35.33	30.21	0	0.43679906	5100	0	2.1330	1E
10.00	2.44	0.07	2.1020	33.50	205-211	0	0.43070000	5100	0	2.1336	£
1849	2:44	0.07	2.1330	31.07	190-21	0.5	0.438799000	6180	0	27,33336	10
40	8.22	0.07	2 1336	32.09	322.331	0	0.21830053	2900	0	27.13330	2
43	1.83	0.97	2 1336	29.85	32.31	0	0.32759029	3865	0	2,1336	e
412	9.03	0.07	2.1336	20.00	32.51	0	0.32759929	2005	0	2,1330	E
43	2.44	0.07	2,1336	(25:93)	280-040	0	0.43679908	5100	0	2.1300	34
			2	1	6		42 1511000	400020			

2

1

т

Data Centre Simulation

Seminar

Numerical results are displayed in tabular form with XY plots. In addition, temperature, velocity, humidity and pressure values are displayed in an interactive 3D graphical environment, together with residence-time data streamlines, iso-surfaces and concentration levels.

Results can be displayed using either SI or Imperial units.

Seminar

CHAM

PHOENICS/FLAIR handles with ease complex room and equipment layouts, non-standard units, and both multi-room and multi-storey environments.

AN

т

Data Centre Simulation

Seminar

External influences, such as solar gain, are readily introduced.

The versatility of PHOENICS/FLAIR is such that it is also appropriate for modelling related equipment, such as the performance of externallylocated chilling units subject to the influence of varying environmental conditions, heat extracts from generators and exhaust outlets.

Seminar

Ventilation and cooling systems for racks, blades and circuit

Seminar

board LED heat releases can be studied and exported to the larger scale model. Temperature, sC 78.33223 74.68646 71.04070 67.39494 63.74917 60.10341 56.45764 2 52.81198 49.16611 45 52035 41.07459 38 22882 34.58306 30.93729 27.29153 23.64576 20.00000 new.gl

From macro-scale to micro-scale data centre problems, PHOENICS/FLAIR offers a solution.